Chemical Oscillator
   HOME

TheInfoList



OR:

A chemical oscillator is a complex mixture of reacting
chemical compounds A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
in which the
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', ''number concentration'', an ...
of one or more components exhibits periodic changes. They are a class of reactions that serve as an example of
non-equilibrium thermodynamics Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an ext ...
with far-from-equilibrium behavior. The reactions are theoretically important in that they show that chemical reactions do not have to be dominated by equilibrium thermodynamic behavior. In cases where one of the reagents has a visible color, periodic color changes can be observed. Examples of oscillating reactions are the
Belousov–Zhabotinsky reaction A Belousov–Zhabotinsky reaction, or BZ reaction, is one of a class of reactions that serve as a classical example of non-equilibrium thermodynamics, resulting in the establishment of a nonlinear chemical oscillator. The only common element in ...
(BZ reaction), the
Briggs–Rauscher reaction The Briggs–Rauscher oscillating reaction is one of a small number of known oscillating chemical reactions. It is especially well suited for demonstration purposes because of its visually striking colour changes: the freshly prepared colourless s ...
, and the
Bray–Liebhafsky reaction The Bray–Liebhafsky reaction is a chemical clock first described by William C. Bray in 1921 and the first oscillating reaction in a stirred homogeneous solution. He investigated the role of the iodate (), the anion of iodic acid, in the catalytic ...
.


History

The earliest scientific evidence that such reactions can oscillate was met with extreme scepticism. In 1828, G.T. Fechner published a report of oscillations in a chemical system. He described an electrochemical cell that produced an oscillating current. In 1899, W. Ostwald observed that the rate of chromium dissolution in acid periodically increased and decreased. Both of these systems were
heterogeneous Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
and it was believed then, and through much of the last century, that homogeneous oscillating systems were nonexistent. While theoretical discussions date back to around 1910, the systematic study of oscillating chemical reactions and of the broader field of non-linear chemical dynamics did not become well established until the mid-1970s.


Theory

Chemical systems cannot oscillate about a position of final equilibrium because such an oscillation would violate the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and Energy transformation, energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects ( ...
. For a
thermodynamic system A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that are ...
which is not at equilibrium, this law requires that the system approach equilibrium and not recede from it. For a closed system at constant temperature and pressure, the thermodynamic requirement is that the
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and pr ...
must decrease continuously and not oscillate. However it is possible that the concentrations of some
reaction intermediate In chemistry, a reaction intermediate or an intermediate is a molecular entity that is formed from the reactants (or preceding intermediates) but is consumed in further reactions in stepwise chemical reactions that contain multiple elementary st ...
s oscillate, and also that the ''rate'' of formation of products oscillates. Theoretical models of oscillating reactions have been studied by chemists, physicists, and mathematicians. In an
oscillating system Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
the energy-releasing reaction can follow at least two different pathways, and the reaction periodically switches from one pathway to another. One of these pathways produces a specific intermediate, while another pathway consumes it. The concentration of this intermediate triggers the switching of pathways. When the concentration of the intermediate is low, the reaction follows the producing pathway, leading then to a relatively high concentration of intermediate. When the concentration of the intermediate is high, the reaction switches to the consuming pathway. Different theoretical models for this type of reaction have been created, including the Lotka-Volterra model, the Brusselator and the
Oregonator The Oregonator is a theoretical model for a type of autocatalytic reaction. The Oregonator is the simplest realistic model of the chemical dynamics of the oscillatory Belousov–Zhabotinsky reaction. It was created by Richard Field and Richard M. ...
. The latter was designed to simulate the Belousov-Zhabotinsky reaction.


Types


Belousov–Zhabotinsky (BZ) reaction

A
Belousov–Zhabotinsky reaction A Belousov–Zhabotinsky reaction, or BZ reaction, is one of a class of reactions that serve as a classical example of non-equilibrium thermodynamics, resulting in the establishment of a nonlinear chemical oscillator. The only common element in ...
is one of several oscillating chemical systems, whose common element is the inclusion of
bromine Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table (halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simila ...
and an acid. An essential aspect of the BZ reaction is its so-called "excitability" — under the influence of stimuli, patterns develop in what would otherwise be a perfectly quiescent medium. Some
clock reactions A chemical clock (or clock reaction) is a complex mixture of reacting chemical compounds in which the onset of an observable property (discoloration or coloration) occurs after a predictable induction time due to the presence of clock species at a ...
such as the
Briggs–Rauscher reaction The Briggs–Rauscher oscillating reaction is one of a small number of known oscillating chemical reactions. It is especially well suited for demonstration purposes because of its visually striking colour changes: the freshly prepared colourless s ...
s and the BZ using the chemical ruthenium bipyridyl as catalyst can be excited into
self-organising Self-organization, also called spontaneous order in the social sciences, is a process where some form of overall order arises from local interactions between parts of an initially disordered system. The process can be spontaneous when suffici ...
activity through the influence of light. Boris Belousov first noted, sometime in the 1950s, that in a mix of
potassium bromate Potassium bromate (KBrO3), is a bromate of potassium and takes the form of white crystals or powder. It is a strong oxidizing agent. It is a toxic and carcinogenic compound. Preparation Potassium bromate is produced when bromine is passed throug ...
,
cerium(IV) sulfate Cerium(IV) sulfate, also called ceric sulfate, is an inorganic compound. It exists as the anhydrous salt Ce( SO4)2 as well as a few hydrated forms: Ce(SO4)2(H2O)x, with x equal to 4, 8, or 12. These salts are yellow to yellow/orange solids th ...
,
propanedioic acid Malonic acid (IUPAC systematic name: propanedioic acid) is a dicarboxylic acid with structure CH2(COOH)2. The ionized form of malonic acid, as well as its esters and salts, are known as malonates. For example, diethyl malonate is malonic acid's ...
(another name for malonic acid) and
citric acid Citric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in t ...
in dilute
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
, the ratio of concentration of the cerium(IV) and cerium(III) ions oscillated, causing the colour of the solution to oscillate between a yellow solution and a colorless solution. This is due to the cerium(IV) ions being reduced by propanedioic acid to cerium(III) ions, which are then oxidized back to cerium(IV) ions by bromate(V) ions.


Briggs–Rauscher reaction

The Briggs–Rauscher oscillating reaction is one of a small number of known oscillating chemical reactions. It is especially well suited for demonstration purposes because of its visually striking color changes: the freshly prepared colorless solution slowly turns an amber color, suddenly changing to a very dark blue. This slowly fades to colorless and the process repeats, about ten times in the most popular formulation.


Bray–Liebhafsky reaction

The
Bray–Liebhafsky reaction The Bray–Liebhafsky reaction is a chemical clock first described by William C. Bray in 1921 and the first oscillating reaction in a stirred homogeneous solution. He investigated the role of the iodate (), the anion of iodic acid, in the catalytic ...
is a chemical clock first described by W. C. Bray in 1921 with the
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
of
iodine Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a semi-lustrous, non-metallic solid at standard conditions that melts to form a deep violet liquid at , and boils to a vi ...
to
iodate An iodate is the polyatomic anion with the formula . It is the most common form of iodine in nature, as it comprises the major iodine-containing ores. Iodate salts are often colorless. They are the salts of iodic acid. Structure Iodate is pyram ...
: :5 H2O2 + I2 → 2 + 2 H+ + 4 H2O and the reduction of iodate back to iodine: :5 H2O2 + 2 + 2 H+ → I2 + 5 O2 + 6 H2O


See also

* Catalytic oscillator *
Mercury beating heart The mercury beating heart is an electrochemical redox reaction between the elements mercury, iron and chromium. The reaction causes a blob of mercury in water to oscillate. The observeable reaction demonstrates an effect of a non-homogeneous elect ...
* Blue bottle experiment *
Clock reactions A chemical clock (or clock reaction) is a complex mixture of reacting chemical compounds in which the onset of an observable property (discoloration or coloration) occurs after a predictable induction time due to the presence of clock species at a ...


References

{{reflist


External links


Video of BZ reaction
Non-equilibrium thermodynamics Chemistry classroom experiments Chemical reactions Clock reactions